Chapter 11.3
$11.3 \quad$ Algebraic Extensions
Def A field extension $K \supset F$ is called algebraic when every element $u \in K$ is algebraic (over F).
Thll.9 if $K \supset F$ is finite-dimensional then $K \supset F$ is algebraic.
Pf. Let $u \in K$. Needed: $f \in F[x]$ such that $f(u)=0$.
$\operatorname{det}[K: F]=n$.
Consider $l_{k}, u, u^{2}, \ldots, u^{n} \in K$ - $n+1$ elements of K.
Since $[k: F]=n$, the $n+1$ elements must be linearly dependent.: over F
$c_{0} \cdot I_{k}+c_{1} u+c_{2} u^{2}+\ldots c_{n} u^{n}=0$, with $c_{i} \in F$
Let $f=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n} \in F[x]$. Ne have $f(u)=0$

Prop A sineple extension $F(u) \supset F$ is algebraic if u is algebraic over F.
Pf
If u is transcendental, then $F(u) \supset F$ cannot be algebraic because $u \in F(u)$.

If u is algebraic (over F) then $F(u) \supset F$ is finite-dineensional, therefore algebraic.
Remark. $F(u)=\left\{\left.\frac{f(u)}{g(u)} \right\rvert\, f, g \in F[x], g(u) \neq 0\right\}$
Proved: together with u, every expression $\frac{f(u)}{g(a)}$ becomes algebraic

$$
h\left(u^{2}+u+r\right)=0, \quad h \in F[x]
$$

$\sigma_{x} \mathbb{C}=\mathbb{R}(i)$
$\frac{2+3 i}{7+4 i}$ - a root of some polynomial from $\mathbb{R}[x]$
Def Finitely generated extension
Start with an extension $K \supset F$, and $u_{1}, \ldots, u_{n} \in K$
$F\left(u_{1}, \ldots, u_{n}\right)$ - finitely generated extension

$$
K \supseteq F\left(u_{1}, \ldots, u_{n}\right) \supseteq F
$$

Prop Let $K \supset F$, and $u, v \in K$. Then $F(u)(v)=F(u, r)$

$$
\begin{array}{cc}
k \supseteq F & K \supseteq F \\
K \supseteq F(u, v) \supseteq F & K \supseteq F(u) \supseteq F
\end{array}
$$

$$
K \supseteq F(u)(v) \supseteq F(u) \supseteq F
$$

Pf $F(u)(v) \supseteq F(u, v)$ because $F(u, v)$ is the smallest containing F, u, and v.
$F(u, v) \geq F(u)(v)$ because $F(u, v)$ contains F and u, therefore $F(u, v) \supseteq F(u)$
$F(u, v)$ contains $F(u)$ and v, therefore

$$
F(u, y) \supseteq F(u)(x)
$$

Th ll. 10 Let $k=F\left(\mu_{1}, \ldots, u_{n}\right)$
be a finitely generated extension.
Assume that all u_{j} are algebraic
Then k is finite-dimensional, therefore al gebraic.

$$
(T h 11,9)
$$

The proof makes use of ThII.H:In $F \subseteq K \subseteq L$, if $[L: K]$ and $[K: F]$ are finite, then so is

$$
[L: F]=[L: k][k: F]
$$

Cor 11.11 If $L \supseteq K$ is algebraic and $K \supseteq F$ is algebraic, then L〇F is algebraic

$$
F \subseteq k \subseteq L
$$

Washing: an algebraic extension may be not finite-dimensional.
However, finitely generated algebraic extension is finite - dimensional

Pf Let $u \in L$. Wanted: u is algebraic over F.
Since $b \supseteq k$ is algebraic, u is algebraic over k, meaning

$$
a_{0}+a_{1} u+\ldots+a_{m} u^{m}=0, \quad a_{i} \in K
$$

Since $K \supseteq F$, all a_{i} are algebraic over F.

$$
L \supseteq F\left(a_{0}, \ldots, a_{u n}\right)(u) \supseteq F\left(a_{0}, \ldots, a_{u n}\right) \supseteq F
$$

simple algebraic therefore finite-dimensional lay ThII.7(3)
finite-dimensional

$$
\text { by Th } 11,10
$$

Cor 11.12 Let $K \supset F$.
Let $E=\{u \in K \mid u$ is algebraic over $F\}$
Then $(1) E$ is a subfield of K
(2) E is an algebraic extension of F.

Pf (1) implies (2) immediately (by the definition of algebraic extension
(1) If $u, v \in E$, then so are $u+v, u v,-u,-v$
are algebraic over F

Consider

$$
K \supseteq F(u, v) \supseteq F
$$

$F(u, v)$ is a finitely generated extension of F
Both u and v are algebraic, thus $F(u, v)$ is an algebraic extension by thIll. 10 .
Since $u+v, u v \ldots \in F(u, v)$, all these elements are algebraic.
$\vec{E}_{x \text { ample }} F=\mathbb{Q}$, we have an extension $\mathbb{C} \supset \mathbb{Q}$

$$
\overline{\mathbb{G}}=\{u \in \mathbb{C} \mid u \text { is algebraic over } \mathbb{Q}\} \text { - the field of }
$$ algebraic numbers.

$\bar{Q} \supset \mathbb{Q}$ is analgebraic extension
not finite-dimensional
If $[\overline{\mathbb{Q}}: \mathbb{Q}]=n$, then every $u \in \overline{\mathbb{Q}}$ would be a root of a polynomial of degree
However, there exist irreducible at most n.
polynomials, of arbitrary tight degree (from Cisenstein criterion) from $(\mathbb{Q}[x]$
A complex rat $u \in \mathbb{C}$ of such a polynomial cannot be a root of a polynomial of smaller degree.

